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Abstract

Data from a growing number of experimental studies show that exposure to higher corre-

lated color temperature (CCT) ambient light, containing more blue light, can positively

impact alertness and cognitive performance in older children and adults. To date, few if any

studies have examined whether light exposure influences cognitive task performance in pre-

school-age children, who are in the midst of rapid developmental changes in attention and

executive function skills. In this study, healthy children aged 4.5–5.5 years (n = 20; 11

females) completed measures of sustained attention and task switching twice while being

exposed to LED light set to either 3500K (a lower CCT) or 5000K (a higher CCT). A control

group (n = 18; 10 females) completed the tasks twice under only the 3500K lighting condi-

tion. Although the lighting condition did not impact performance on the sustained attention

task, exposure to the higher CCT light lead to greater improvement in preschool-age chil-

dren’s task switching performance (F(1,36) = 4.41, p = 0.04). Children in the control group

showed a 6.5% increase in task switching accuracy between time points, whereas those in

the experimental group improved by 15.2%. Our primary finding–that exposure to light at a

higher correlated color temperature leads to greater improvement in task switching perfor-

mance–indicates that the relationship between the spectral power distribution of light and

executive function abilities is present early in cognitive development. These data have impli-

cations for designing learning environments and suggest that light may be an important con-

textual factor in the lives of young children in both the home and the classroom.

Introduction

A growing body of work demonstrates that the lighting environment can have profound

impacts on domains outside of visual perception such as cognition. Multiple studies report

positive effects of exposure to short wavelength (blue) light on alertness and cognitive perfor-

mance [1, 2]. Blue light is thought to impact alertness via stimulation of the intrinsically photo-

sensitive retinal ganglion cells (ipRGCs), a subset of ocular photoreceptors maximally sensitive
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to light in the blue portion of the visible spectrum [3, 4], with a peak sensitivity at approxi-

mately 490nm [5, 6]. When stimulated, the ipRGCs send signals via the retinohypothalamic

tract directly into the suprachiasmatic nucleus (SCN), leading to the suppression of melatonin

[7, 8]. Over longer periods of light exposure, the signal from the ipRGCs filters out into various

regions of the brain, including the cingulate and dorsolateral prefrontal cortices [9], both of

which play a major role in attention and cognitive control [10, 11]. Activation of the ipRGCs

by blue light has even been seen in blind individuals [12] suggesting the system is largely inde-

pendent of visual perception.

Previous research findings have demonstrated improved performance on measures of alert-

ness and executive function abilities in adult participants after daytime exposure to higher cor-

related color temperature (CCT), blue-enriched white light [13–15]. Studies of adolescents

offer results that are largely consistent with the adult literature in showing positive effects after

daytime exposure to higher CCT light. For example, studies measuring performance on atten-

tion tasks found fewer errors committed after exposure to higher CCT light in high school stu-

dents [16–18]. In young children, however, links between lighting CCT and cognitive

performance are limited and less consistent. One study conducted with third graders (average

age 8.3 years) found that children exposed to higher CCT light made fewer errors on an atten-

tion test compared with children in a control condition [16]. Conversely, another study of

third graders using a similar approach found no differences on test performance between chil-

dren in the different lighting conditions [19]. Rigorous research on light’s effect on cognition

in children younger than age eight years is scarce. During the preschool years, children dem-

onstrate pronounced improvements on a variety of cognitive skills that depend on the dorso-

lateral prefrontal cortex, such as task switching and inhibitory control [20]. Despite these rapid

developmental changes in executive function skills, to our knowledge, no study to date has

examined how different lighting conditions impact cognition in preschool-age children.

Given the relatively recent discovery of the ipRGCs, a full picture of their development does

not exist. Data from animal models, however, suggest that ipRGCs are present and light sensi-

tive from birth, with an active connection to the SCN, suggesting an earlier developmental tra-

jectory than the rods and cones [21,22]. ipRGC’s express the photopigment melanopsin, which

has been identified in human eye tissue as early as eight weeks post-conception [23], indicating

the foundation for this system is present early in human development. In addition, the pupil-

lary light reflex, initiated by the ipRGCs [24, 25], emerges in preterm infants between 30 and

35 weeks [26]. Taken together, these findings suggest that the blue-light sensitive ipRGCs are

well developed by the preschool age.

Surveys of US preschoolers found children’s average time spent outdoors ranges from 63

minutes to 146 minutes a day [27, 28]. Additionally, a recent study of families in a low-income

urban community indicates that by age six years, 97% of children had used mobile devices,

most starting before age one year, and 75% of children under age four years had their own

mobile device [29]. With the prevalence of time spent indoors and children’s increasing access

to blue-light emitting mobile devices, young children are being exposed to more artificial light

sources than ever before. With these numbers on the rise, it is imperative to understand what

role the lighting environment plays in children’s development.

Recent findings indicate that children are highly sensitive to light as measured by melatonin

suppression, with children showing significantly greater melatonin suppression in response to

light exposure than that measured in adults and adolescents [30–32]. Children’s melatonin

response is also influenced by light CCT: Data from recent studies indicate a significant corre-

lation between the CCT of lights in the home and circadian phase [33] as well as greater mela-

tonin suppression in children exposed to light at a higher CCT of 6000K compared with those

exposed to a 3000K light condition [34]. In addition, children have significantly larger pupil
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diameters than adults [32], as well as clearer lenses [35], allowing more blue light to pass into

the eye. As such, it is expected that exposure to higher CCT light will have significant impacts

on children’s cognitive performance, possibly stronger than that previously seen in adults.

This study will extend foundational knowledge of light’s effect on cognition by examining

the effects of daytime exposure to higher CCT light on preschool-age children’s cognitive per-

formance. Participants were tested twice on measures of sustained attention and cognitive flex-

ibility. Sustained attention refers to the ability to devote attention to a single stimulus over an

extended period of time [36]. Sustained attention undergoes significant developmental

changes between the ages of 4 and 6 years [37] and plays an important role in school achieve-

ment, serving as a moderator between general intelligence and GPA, as shown in research

findings with high school students [38]. Cognitive flexibility is a key component of executive

functions [39], which predicts academic achievement throughout childhood [40–42]. Partici-

pants first completed the tasks under light set to a lower CCT at 3500K followed by a higher

CCT setting of 5000K. A control group of participants was also tested twice under the 3500K

light setting. We hypothesized that preschool-age children exposed to the higher CCT light

would show significantly greater improvement on tasks measuring attention and cognitive

flexibility than children exposed only to light of a lower CCT. With these data, parents and

educators could make empirically-based decisions to create supportive learning environments

for young children.

Methods

Participants

Forty-five children aged 4.5-to-5.5 years from the greater Amherst, MA area completed a sin-

gle in-laboratory experimental session lasting approximately one hour. Data were collected

across a 12-month period from February 2016 to February 2017. Participants were contacted

through e-mail and phone after being identified from state birth records, and parents were

asked to confirm their child met the inclusion criteria before the appointment was scheduled.

Children were eligible to participate if they were between 4.5–5.5 years old, had no history of

psychological or neurological disorders, were not taking any psychotropic medication, and

had not traveled across time zones for one month before testing. One participant was excluded

for failing to meet the eligibility requirements, two for experimenter error, and four for non-

compliance. Thus, the final sample included 38 children (range = 4.5–5.5 years, M = 4.91

years, SD = 0.26 years; 21 female; 34 Caucasian, 2 Hispanic, 2 mixed-race). Thirty-four chil-

dren were currently enrolled in preschool, 3 were about to start kindergarten, and 1 was not

currently enrolled in school. Children received a small toy as a token of appreciation for their

participation. All study procedures were approved by the University of Massachusetts Amherst

Institutional Review Board. Written informed consent was obtained from a parent.

Apparatus and setting

Study settings and procedures were adapted from Hartstein, et al. [14]. Testing took place in a

small, windowless laboratory measuring 2.6 m x 2.2 m and 2.3 m tall, with a white ceiling and

off-white painted walls. The testing room contained a desk covered with a white sheet. The

decision to have the ceiling, walls, and table matte white was to reflect the light from the lumi-

naires without glare. A Dell Inspiron 1501 laptop computer, used to administer the cognitive

tasks, was placed on the desk. Study tasks were programmed using E-Prime Version 1.2.

Two LED luminaires, centered in the ceiling, were positioned above the desk. The lights

were 0.6m x 0.6m (2’ x 2’) CREE LED color tunable fixtures, containing 5 different color chan-

nels (red, green, blue, amber, phosphor converted white), mixed together at various levels to
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create light of different CCTs. For the lower CCT lighting condition, the light was set to

3500K, a common setting chosen for working environments. For the higher CCT lighting con-

dition, the light was set to 5000K. Fig 1 shows the spectra for each of the light settings. The

3500K setting has a peak emission at 630nm. The 5000K setting has a peak emission at 475nm,

close to the maximal sensitivity of the ipRGCs.

The illuminance at each participant’s eye level with the lights and laptop both turned on

was set to be consistent across lighting conditions and was measured with a LX1330B digital

light meter to be approximately 250 lux. Illuminance measurements taken at the workplane

facing the light source were 715 lux and 683 lux for the 3500K and 5000K conditions respec-

tively. The color-rendering index, a measure of how well an artificial light source reveals the

colors of an object relative to a natural light source [43], was held constant across conditions

(CRI = 94 and 93 for the 3500K and 5000K conditions respectively). Although the participants

Fig 1. Spectra of the room lights at 3500K and 5000K measured at the source.

https://doi.org/10.1371/journal.pone.0202973.g001
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were exposed to light from the laptop as well as the luminaires, the laptop screen constituted

only about 10% of the total light reaching the participant’s eye. Furthermore, the laptop screen

illuminance was held constant for all participants and across conditions.

Besides looking at the light spectrum as a whole, we can divide the spectrum to calculate

effective illuminance, which provides a measures of how much light is impacting each of the

five specific types of photoreceptor in the eye (S Cone, M Cone, L Cone, Rod, and ipRGC).

Table 1 shows the effective illuminance perceived by each type of photoreceptor when exposed

to the two lighting conditions, calculated from the illuminance measurements taken at the

workplane [24]. Compared with the baseline setting of 3500K, the 5000K light setting leads to

a reduction in stimulation of the L cones, corresponding to the decrease in red light emitted by

the light source, and a large increase in stimulation of the S cones and, critically, the ipRGCs,

maximally stimulated by light in the blue portion of the visible spectrum. It should be noted,

however, that the calculations for effective illuminance were based off of photopigment

absorption for an adult observer [24] and values for young children may differ.

Procedure

Participants were randomly assigned to either the control or experimental group before arrival

to the testing environment. Informed consent was obtained from the parent while the child

participant acclimated to the researchers while playing with some toys. Although the parents

were fully informed of the purpose of the study and whether the light was going to be changed,

the details of the study were not discussed with the children so that they did not focus on any

possible changes in lighting condition. Parents were also asked to answer questions regarding

the children’s sleep patterns, including their typical bed time, wake time, and napping habits,

as well as how long they slept the previous night. Following informed consent, the participant

and his or her parent were brought into the testing room and the participant was seated at the

desk in front of the laptop computer. The parent was seated behind the child at the back of the

room, out of the child’s line of sight.

During the baseline assessment, the light in the room was set to 3500K for all participants.

Participants completed two computer tasks: a Go/No-Go task measuring selective attention

[44, 45] and a Hearts and Flowers task, which assesses cognitive flexibility, or the ability to

switch between rules.

The order of task presentation was counter-balanced across participants. Following the first

completion of the tasks (baseline assessment), participants were briefly taken out of the testing

room in order to choose storybooks to read during the subsequent 20-minute adaptation

period. While the participants were out of the room, if they were in the experimental condi-

tion, the researcher covertly changed the light in the testing room from 3500K to 5000K. For

the control condition, the light settings were not changed.

Participants were then brought back into the testing room, where they stayed for the

remainder of the study. They then read age-appropriate storybooks with the researcher or

Table 1. Effective illuminance perceived by photocells for each lighting condition, taken facing the light source.

Photocell Effective illuminance (lux)

3500K 5000K

S Cone (blue) 318.01 519.10

ipRGC 450.59 650.09

Rod 507.32 646.97

M Cone (green) 615.81 665.88

L Cone (red) 713.88 685.97

https://doi.org/10.1371/journal.pone.0202973.t001
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their parents for 20 minutes, which served as an adaptation phase during which participants in

the experimental condition adjusted to the new lighting environment. Following the adapta-

tion period, participants completed the two computer tasks a second time (test assessment), in

the reversed order from which they completed them previously.

Go/no-go task. Participants were told that they were going to play a game about going to

the zoo [46]. They were shown an image of a cartoon zookeeper and told that “one day, the

zookeeper wasn’t paying attention and all the animals escaped from the zoo!” Children were

then told that their job was to help the zookeeper catch the escaped animals. In order to do

that, they needed to press the right mouse button whenever they saw an animal appear. They

were then shown a picture of a monkey and told that the monkey is their friend, who is helping

them to catch the animals, so when they see the monkey, they shouldn’t press the button. Chil-

dren were then asked to repeat the instructions to confirm their comprehension. If the child

did not understand, the instructions were repeated until the child demonstrated a sufficient

understanding of the instructions. The task was composed of 64 trials, in a semi-random

order. The task consisted of 75% “go” trials and 25% “no-go” trials. “Go” trials consisted of

images of six different animals: a flamingo, a tiger, a tortoise, a hippopotamus, a zebra, and an

antelope.

Each trial image was displayed for 800 ms, separated by a white slide with a fixation cross

displayed for 500 ms. Results were scored for accuracy, the percent of correct “no-go” trials

out of 16, in which the child successfully inhibited responding to the image of the monkey, as

well as reaction time, the latency on correct “go” trials, in which the child correctly “caught”

one of the other six animals.

Hearts and flowers. Task components and procedures were adapted from Davidson,

et al. [39]. The Hearts and Flowers task consisted of two practice blocks, each with 16 trials, fol-

lowed by a test block with 40 trials. In each trial, an image of a heart or a flower appeared on

either the left or right side of the screen (Fig 2). The children were instructed that when they

saw a heart, they should press the mouse button that matches the same side where the heart

appears on the screen. Alternatively, when they saw a flower, they should press the mouse but-

ton that is on the opposite side of where the flower appears on the screen. For example, if the

flower appeared on the left, they should press the right mouse button. Children were instructed

Fig 2. Example of stimulus from Hearts and Flowers task, a measure of task switching ability.

https://doi.org/10.1371/journal.pone.0202973.g002
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to press the button corresponding to either the same or opposite side on which the image

appears, depending on whether it is a heart or a flower.

The first practice block consisted of only heart trials, the second practice block consisted of

only flower trials, and the test block consisted of both types of trials mixed together. The test

block consisted of 40 trials, 20 of each type of stimulus, 10 appearing on each side of the screen,

presented in a random order. Before each block began, the instructions for that block were

reviewed with the child, who was asked to demonstrate which button he or she should press

for each possible trial. During each trial, a fixation cross appeared for 500 ms, followed by the

trial stimulus. The stimulus appeared onscreen for 2500 ms. Trials were broken down into

“no-switch” trials, in which two of the same type of stimulus appeared in a row (i.e. a heart fol-

lowed by another heart), and “switch” trials, in which the trial followed a trial of the opposite

stimulus type (i.e. a heart followed by a flower). Previous findings with adult participants dem-

onstrated significant performance on switch trials following exposure to light set to a higher

CCT [14]. Participants’ accuracy (percent correct) and reaction times on correct trials were

recorded and analyzed by trial type.

Analysis

Statistical analyses (S1 Dataset) were performed with SPSS Statistics 21.0 (IBM Corp. Armonk,

NY, USA). Independent t-tests were used to examine differences in age, sleep habits, study par-

ticipation time, and baseline task performance between participants assigned to the control

and experimental groups. Data from each task were analyzed with 2-way 2x2 repeated mea-

sures ANOVAs to examine differences between the two light conditions (Control, Experimen-

tal) and across the two testing time points (Baseline, Test). If the lighting condition impacted

participants’ performance over time, we would expect to see significant interactions. Effect

sizes for significant results are given as partial-eta squared.

Results

Table 2 provides a comparison of age, sleep habits, and study time between participants in the

control and experimental groups. T-tests revealed that significantly more participants in the

control group reported taking daily naps than those in the experimental group, t(30.5) = 2.78,

p = 0.01. No significant differences between the two groups were found for parent report of

the child’s average bedtime, average wake time, or how long the child slept the night before

testing (all p> 0.05), although parents of children in the experimental group reported their

children having slept an average of 37 minutes more the previous night than children in the

control group. Although participants could not all be tested at the same time of day, the

Table 2. Descriptive statistics, M(SD), for demographics, sleep habits, and study participation time.

Control

(n = 18)

Experimental

(n = 20)

Statistics

Sex 10 female 11 female X2 = .11, p = 0.74

Age 4.95yrs (0.28) 4.88yrs (.26) t(36) = .80, p = 0.43

Bed Time 20:15 (0:44m) 20:11 (0:46m) t(36) = .25, p = 0.80

Wake Time 06:54 (0:32m) 07:05 (0:47m) t(36) = -.78, p = 0.44

Hours Slept Previous Night 10.19 (1.29) 10.81 (0.77) t(27.2) = -1.78, p = 0.09

Daily Naps (%) 55.6 15.0 t(30.5) = 2.78, p = 0.01

Study Time 11:36 (2h:22m) 12:35 (2h:26m) t(36) = -1.27, p = 0.21

https://doi.org/10.1371/journal.pone.0202973.t002
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distribution of the study time did not differ significantly between the two groups, t(36) = -1.27,

p = 0.21.

Go/no-go task

Descriptive statistics for accuracy and reaction time are presented in Table 3. Accuracy was

scored as the correct number of “no-go” trials out of 16, in which participants correctly inhib-

ited pressing the mouse button upon seeing the picture of the monkey. Reaction time was cal-

culated in ms for correct “go” trials, in which participants correctly pressed the mouse button

in response to a “go” stimulus. Independent t-tests revealed no differences between groups on

baseline performance for either accuracy or reaction time (all t< 1.0).

Accuracy. Both the control and experimental groups showed only minor improvements

between the baseline and test assessments. The analysis indicated no significant main or inter-

action effects (all F< 1.0).

Reaction time. A significant main effect of Phase was found, F(1,36) = 7.14, p = 0.01, ηp
2

= 0.17, with participants in both groups showing decreased reaction times from the baseline to

test assessments. No significant effects were found for Light Condition, F(1,36) = 0.19,

p = 0.67, or Light Condition by Phase interaction, F(1,36) = 0.06, p = 0.81.

Hearts and flowers task

Only trials in which the participant answered correctly were included in the analyses. Results were

analyzed by overall performance across the 40 trials in the mixed block as well as performance on

“switch” trials, in which participants had to rapidly switch between the two types of trials. Descrip-

tives for accuracy and reaction time are presented in Table 3, divided into overall performance

and performance on “switch” trials. Accuracy was calculated as percent correct. Reaction time is

averaged across correct trials. Independent t-tests revealed no differences between groups on the

baseline performance across all measures of accuracy and reaction time (all t< 1).

Accuracy. Overall accuracy was calculated as the percent of correct trials out of the 40 tri-

als given in the mixed block. A significant main effect of Phase was found, F(1,36) = 45.60,

p< 0.001, ηp
2 = 0.56, such that participants across both groups showed improvements in accu-

racy between the baseline and test assessments. Although both groups of participants showed

improved accuracy between the baseline and test assessments, the experimental group showed

Table 3. Descriptive statistics, M(SD), for accuracy (Acc) and reaction time (RT) on the Go/No-Go and Hearts and Flowers tasks.

Control Experimental Interaction Statistics

Baseline Test Baseline Test F p
Go/No-Go Acc 78.81(12.13) 80.56(17.00) 78.44(15.13) 80.31(17.69) 0.001 0.98

Go/No-Go RT (ms) 593.93(51.45) 568.38(48.41) 585.46(49.33) 564.18(60.11) 0.06 0.81

Hearts/Flowers Overall Acc 65.69(19.27) 74.03(18.21) 66.50(18.02) 80.13(16.85) 2.65 0.11

Hearts/Flowers Switch Acc 63.44(18.99) 69.89(19.68) 61.67(19.70) 76.90(16.63) 4.41 0.04�

Hearts/Flowers No-Switch Acc 66.59(22.57) 77.08(20.39) 71.19(19.39) 84.06(19.54) 0.43 0.52

Hearts/Flowers Overall RT (ms) 1197.75(357.73) 1118.65(328.18) 1221.47(312.56) 1172.14(238.73) 0.15 0.70

Hearts/Flowers Switch RT (ms) 1323.51(424.29) 1222.85(339.19) 1373.41(360.56) 1284.36(265.26) 0.02 0.90

Hearts/Flowers No-Switch RT (ms) 1092.07(318.92) 1040.04(337.74) 1102.16(282.96) 1066.89(233.99) 0.05 0.82

� p< 0.05

Note: Go/No-Go Accuracy was scored as the percent of correct “no-go” trials out of a possible 16. Reaction time was averaged across correct “go” trials. Hearts and

Flowers Accuracy was scored as percent of correct trials (calculated separately across all trials and switch trials). Reaction time was averaged across correct trials only.

2x2 ANOVAs were performed comparing Light Condition (Control, Experimental) and Phase (Baseline, Test).

https://doi.org/10.1371/journal.pone.0202973.t003
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a larger improvement (13.95%) than participants in the control group (8.29%); however, the

Light Condition by Phase interaction did not reach significance, F(1,36) = 2.65, p = 0.11. No

significant main effect of Light Condition was observed, F(1,36) = 0.37, p = 0.55.

For switch trials, results showed a significant main effect of Phase, F(1, 36) = 26.86,

p< 0.001, ηp
2 = 0.43, such that participants in both groups showed improvements in accuracy

on switch trials between the baseline and test assessments. A significant Light Condition by

Phase interaction was found, F(1,36) = 4.41, p = 0.04, ηp
2 = 0.11. Similar to the overall trials,

although participants in both groups demonstrated improved accuracy on switch trials

between time points, participants in the experimental group showed a significantly larger

improvement (15.23%) than participants in the control group (6.45%), t(36) = -2.10, p = 0.04,

d = 0.68. These results indicate that, following exposure to the higher correlated color tempera-

ture light setting, participants in the experimental group showed a significantly larger

improvement in their ability to switch between trial types than participants in the control

group. No significant main effect of Light Condition was found, F(1,36) = .002, p = 0.97. No

significant interaction was found for no-switch trials, F(1,36) = 0.25, p = 0.62.

Reaction time. Reaction time was calculated as the average reaction time (in ms) for cor-

rect trials across the 40 total trials in the mixed block. Table 3 provides descriptive statistics for

each group across the two time points. No significant main effects or interaction effects were

observed. For the switch trials, a significant main effect of Phase was found, F(1,36) = 4.44, p =

.04, with participants in both groups showing faster reaction times in the test assessment com-

pared with the baseline. Data indicated no significant effects for Light Condition, F(1,36) =

0.29, p = 0.60, or Light Condition by Phase interaction, F(1,36) = 0.02, p = 0.90. No significant

main effects or interactions were found for performance on no-switch trials.

Discussion

To our knowledge, this is the first experimental study to examine whether exposure to higher

CCT light (5000K) improves cognitive performance in healthy preschool-age children com-

pared with exposure to light set to a lower CCT (3500K), utilizing a tightly-controlled mixed

model design. As hypothesized, participants demonstrated significantly greater improvement

in their performance on a task measuring their ability to switch between tasks following expo-

sure to the experimental lighting condition; however, we found no effect of the lighting condi-

tion on performance on the sustained attention task. Children in the experimental group

demonstrated a 15.2% increase in switch accuracy between time points, as measured by perfor-

mance on the Hearts and Flowers task, compared with children in the control group whose

accuracy increased an average of 6.5%. In addition, the main effect of Phase for reaction time

on switch trials suggests that children in the experimental group gained significantly greater

accuracy on switch trials than participants in the control group without sacrificing speed, con-

sistent with results from previous work measuring the relationship between young children’s

speed and accuracy on measures of executive function [47]. These results extend previous find-

ings with adult participants that exposure to higher CCT light improves performance on a task

switching task [13, 14]. Results are discussed in the context of the relationship between the

built environment and development, as well as emerging trends in technology.

Our results provide important evidence demonstrating that the relationship between light

spectral power distribution and cognitive task performance is observable in children as young

as 4.5 years of age. The preschool-age period is one of rapid developmental change, as children

begin to fine-tune multiple dimensions of executive function skills, including working mem-

ory, inhibitory control, and cognitive flexibility. Cognitive flexibility, however, develops more

slowly across early childhood than other dimensions of executive functions. One study testing
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children aged 4 to 13 years on a task switching task found that 13-year-olds did not perform at

adult levels [39]; however, the current results suggest that exposure to a bluer light source can

help children effectively switch between rules and exercise greater cognitive flexibility. Subse-

quent work should explore how exposure to higher CCT light at this sensitive developmental

period impacts not only short-term changes but also long-term development of these skills.

Although our results provide preliminary evidence of the relationship between light CCT

and cognitive task performance in preschool-age children, the mechanisms underlying these

effects are not clear. It is known that stimulation of the ipRGC leads to activation of the SCN,

regulating the circadian system [7], before filtering out to regions associated with cognitive

control. Higher CCT light, containing more blue light and more closely resembling the natural

daylight environment, stimulates these cells and tells the body’s internal clock that it is time to

be awake and alert. Adults exposed to higher CCT light in the daytime frequently report higher

subjective alertness and decreased feelings of sleepiness [15]. In addition, previous findings

have demonstrated that insufficient sleep negatively impacts children’s cognitive task perfor-

mance [48]. Increased alertness and decreased sleepiness in children exposed to the higher

CCT lighting condition would support the observed improvements in cognitive task perfor-

mance. Although accurate self-report of alertness and sleepiness are difficult to obtain in

young children, future studies should use subjective as well as physiological measures of alert-

ness to better understand the specific processes underlying these effects. Additionally, a previ-

ous study found that higher CCT light leads to better near acuity in children aged 10–11 years

[49]. It is therefore possible that improved near acuity in preschool-age children in the experi-

mental group contributed to their performance on the hearts and flowers task.

Environmental contexts can play an important role in children’s learning [50, 51]; however,

current research on light CCT and its impact on cognition in early childhood is limited. Sev-

eral color-tunable fixtures are already being marketed to schools as a means of influencing

student behavior in the classroom. These fixtures allow teachers to select the lighting environ-

ment from pre-programmed options to suit the demands of the classroom activity and pro-

mote learning. With the implementation of such devices in classrooms and the drastic rise of

children’s exposure to blue-light emitting electronic devices [29, 52], it is crucial to understand

and quantify the impacts of daytime artificial light exposure on multiple childhood develop-

mental domains. The present results have the capacity to aid in informing the construction of

optimal learning environments for young children in homes and schools, including utilization

of light at a higher CCT to enhance children’s executive function abilities from a young age.

Previous research findings have identified children’s performance on executive function tasks

as a significant predictor of mathematical ability [40], as well as associated with scholastic

achievements in math, English, and science [41, 42]. Future work, however, is needed to clarify

whether improvements on measures of executive function as a result of the lighting environ-

ment translate to improvements in scholastic performance.

Contrary to our hypothesis, we found no differences between participants in each lighting

condition on sustained attention. This contrasts previous findings with adults demonstrating

positive impacts of higher CCT light on go/no-go task performance [14, 44]. Accuracy on the

task was high, with participants averaging approximately 80% correct on no-go trials, and both

the control and experimental groups showed only minor improvement in accuracy from the

baseline to test assessments, suggesting participants were performing near ceiling level. This

finding suggests that the task parameters may not have been challenging enough to elicit any

differences as a function of the lighting condition, which is consistent with previous findings

from adult participants showing that the impact of the lighting condition is influenced by the

task difficulty [53]. Furthermore, the task used in this study consisted of only 16 “no-go” trials,

creating the possibility that the task was not sensitive enough to detect small group differences.
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Thus, an important next step will be to explore whether light CCT impacts children’s perfor-

mance on more complex attention tasks or tasks comprised of a greater number of trials.

Although this study presents important findings on the impact of light on preschool-age chil-

dren’s cognitive abilities using a tightly-controlled experimental design, the limitations of this

work are important to note. Only one study was conducted to test our hypotheses and our sample

was relatively small. As such, the findings of the present study should be considered preliminary.

The alerting effects of light in adults are impacted by an individual’s prior light history [54].

Because no data on children’s light history were collected, the influence of previous exposure can-

not be discounted. Children’s sleep patterns and sleep duration were obtained through parental

report, which may be subject to reporter bias and should be interpreted with caution [55]. Fur-

thermore, although our results demonstrated improvement in task switching ability under the

higher CCT lighting condition, the study did not include a condition in which the light was

changed to a lower CCT, leaving open the possibility that the present results would be obtained by

any change in lighting; however, the repeated findings of the positive effects of higher CCT on

cognitive performance in adults suggest this is unlikely to be the case [13–15, 44]. Lastly, the gen-

eralizability of the results is limited, as they were obtained in a controlled laboratory environment

with healthy, neurotypical children. Future, well-controlled fieldwork is needed to determine if

the same effects of the lighting condition would be observed in everyday settings, such as the class-

room or home using real world scholastic activities.

In summary, these findings add to a growing body of work demonstrating the impacts of

light outside of visual perception. Our primary finding–that exposure to light at a higher CCT

leads to greater improvements in a measure of preschool-age children’s cognitive flexibility pro-

vides preliminary evidence suggesting the early emergence of the relationship between the lighting

environment and cognitive task performance. These results highlight the importance of further

research about these effects in the context of learning. Such data may inform parents and educa-

tors on the impacts of the environment on cognitive development in the early years of life.

Supporting information

S1 Dataset. Subject demographic information and task performance. This Excel spreadsheet

contains the data used for analyses in the present study. The columns in the dataset are ID Num-

ber, Condition (Control or Experimental), Age (in months), Gender (M or F), Study Time, Aver-

age Bed Time, Average Wake Time, Hours Slept Previous Night, Naps (daily naps, Y or N), Go/

No-Go Accuracy Baseline (out of 16), Go/No-Go Accuracy Test (out of 16), Go/No-Go Reaction

Time Baseline (ms), Go/No-Go Reaction Time Test (ms), Hearts and Flowers Overall Accuracy

Baseline (% correct), Hearts and Flowers Overall Accuracy Test (% correct), Hearts and Flowers

Switch Accuracy Baseline (% correct), Hearts and Flowers Switch Accuracy Test (% correct),

Hearts and Flowers No-Switch Accuracy Baseline (% correct), Hearts and Flowers No-Switch

Accuracy Test (% correct), Hearts and Flowers Overall Reaction Time Baseline (ms), Hearts and

Flowers Overall Reaction Time Test (ms), Hearts and Flowers Switch Reaction Time Baseline

(ms), Hearts and Flowers Switch Reaction Time Test (ms), Hearts and Flowers No-Switch Reac-

tion Time Baseline (ms), Hearts and Flowers No-Switch Reaction Time Test (ms).

(XLSX)
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