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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Ocular light exposure has important influences on human health and well-being through

modulation of circadian rhythms and sleep, as well as neuroendocrine and cognitive func-

tions. Prevailing patterns of light exposure do not optimally engage these actions for many

individuals, but advances in our understanding of the underpinning mechanisms and emerg-

ing lighting technologies now present opportunities to adjust lighting to promote optimal

physical and mental health and performance. A newly developed, international standard

provides a SI-compliant way of quantifying the influence of light on the intrinsically photosen-

sitive, melanopsin-expressing, retinal neurons that mediate these effects. The present
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report provides recommendations for lighting, based on an expert scientific consensus and

expressed in an easily measured quantity (melanopic equivalent daylight illuminance (mela-

ponic EDI)) defined within this standard. The recommendations are supported by detailed

analysis of the sensitivity of human circadian, neuroendocrine, and alerting responses to

ocular light and provide a straightforward framework to inform lighting design and practice.

Introduction

Besides supporting visual perception, ocular light exposure influences many aspects of human

physiology and behaviour, including circadian rhythms, sleep, and alertness (both via circa-

dian system–dependent and circadian system–independent routes), mood, neuroendocrine,

and cognitive functions (reviewed in [1–4]). This array of retinally driven responses to light

(collectively termed “non–image-forming” or, as used here for brevity, “nonvisual”) are impor-

tant determinants of health, well-being, and performance, and some are already clinically rele-

vant, as evidenced by current light therapy for circadian rhythm sleep disorders and various

forms of depression [5–7]. Industrialisation and urbanisation have progressively and dramati-

cally altered individuals’ light exposures, resulting in less light, including natural light, during

the daytime and less darkness during the night, due to spending more time indoors where

electric lighting provides the dominant source of illumination. Substantial evidence indicates

that such altered light exposure patterns (and associated circadian/sleep disruption) contribute

to negative impacts on health, sleep, and productivity, ranging from acute increases in accident

risk to increased incidence of cardiometabolic disorders and forms of cancer (reviewed in [8–

14]). Therefore, there is an urgent need for evidence-led recommendations to help inform the

design and application of light emission technologies and human light exposures.

To date, a key challenge when optimising light exposure for promoting human health, well-

being, and performance has been the lack of an accepted scientific framework upon which to

quantify the propensity for light to elicit the relevant responses and from which to base recom-

mendations for lighting design and practice. Fortunately, as a result of several decades of scien-

tific advances, research-based recommendations are now possible.

Building on initial observations that physiological responses to ocular light exposure can

persist even in people who are totally visually blind [15–17], convergent evidence from studies

of humans and animals has shown that such nonvisual responses (including effects on the cir-

cadian system, melatonin secretion, sleep/alertness, and pupil constriction) originate via a spe-

cialised class of retinal neurons, the intrinsically photosensitive retinal ganglion cells (ipRGCs)

[18–26]. The light-sensing photopigment within the ipRGCs is melanopsin, which, in humans,

is maximally sensitive to photons in a distinct portion of the visible spectrum to the cone

photopigments (λmax� 480 nm before accounting for filtering through the lens and ocular

media) [23,25,27]. As a result, the established photometric quantities used to describe bright-

ness and luminous sensation as perceived by humans do not adequately reflect the spectral

sensitivity of any melanopsin-dependent responses to light. Measures such as photopic (il)

luminance, which primarily reflect the spectral sensitivity of long and medium wavelength

sensitive cones, place substantially greater weight on longer wavelengths than those to which

melanopsin is most sensitive. These measures therefore provide an inappropriate surrogate for

quantifying the propensity of light to engage ipRGC-driven circadian, neuroendocrine, and

neurobehavioural responses (Fig 1A).

While the potential value of a melanopsin-based photometric quantity has been recognised

for some time, there has also been uncertainty as to whether this provides a sufficiently detailed
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model of the spectral sensitivity of human ipRGC-driven responses to ocular light exposure

[28]. Hence, while the spectral sensitivity of physiological responses to light in visually blind

people and animals matches that expected for melanopsin [20,23,25,29], in the fully intact ret-

ina, ipRGCs can also receive signals originating from rods and/or cones [26]. Moreover, avail-

able data indicate that the relative contributions of melanopsin and rod/cone photoreception

to nonvisual ocular light responses, and consequently their apparent sensitivity, may vary as a

Fig 1. Differences in photopic and melanopic spectral sensitivity formalised in the SI-compliant system for

quantifying ipRGC-influenced responses to light. Panel A illustrates the melanopic action spectrum (smel(λ) with

peak sensitivity at 490 nm, following prereceptoral filtering appropriate for a 32-year-old observer) and the photopic

(2˚ spectral luminous efficiency) function, V(λ), superimposed on the spectral power distribution of standard daylight

(CIE illuminant D65 [142]). Spectral sensitivities are plotted in logarithmic coordinates. Panel B illustrates the

weighted spectral power distribution for spectrum in A multiplied by the photopic and melanopic efficiency functions

at 1,000 lux for illuminance (Ev) and melanopic EDI (ED65
v;mel). Sensitivity curves in A are plotted from the tabulated

values provided in the CIE S026 standard [34], with weighted irradiance (plots in B and associated calculations)

derived using the procedures described in detail therein. CIE, Commission Internationale de l’Eclairage; iAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 3:Pleaseverifythatallentriesarecorrect:pRGC,

intrinsically photosensitive retinal ganglion cell; melaponic EDI, melanopic equivalent daylight illuminance.

https://doi.org/10.1371/journal.pbio.3001571.g001
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function of exposure duration, light intensity, and perhaps time of day and/or prior light expo-

sure [25,28,30–33].

As an initial response to the absence of a suitable metric for quantifying ipRGC-dependent

ocular light responses, in 2013, an expert working group proposed a system that weighted irra-

diance according to the effective in vivo spectral sensitivity of the 5 known human retinal

opsin proteins (melanopsin, rhodopsin, S-, M-, and L-cone opsin) [28]. This framework has

now been formalised into an international standard with a SI-compliant system of metrology

for ipRGC-influenced responses to light (Commission Internationale de l’Eclairage (CIE) S

026 [34]). Within this system, the effective rates of photon capture for each of the human reti-

nal opsins under a given light condition are equated to the photopic properties (e.g., illumi-

nance) of a standard 6500 K (D65) daylight spectrum that would produce the same rate of

photon capture. This approach defines, for each opsin class, the α-opic equivalent daylight illu-

minance (EDI; where α-opic denotes one of the 5 human opsin classes that can contribute to

ipRGC-influenced responses, e.g., melanopic; Fig 1B). Despite the significant advance pro-

vided by this new light measurement standard, to date, explicit scientific consensus guidance

on the relationship between the 5 α-opic quantities and the magnitude of practically relevant

ipRGC-dependent responses is lacking. For example, how should signals from melanopsin,

cones, and rods be weighted? Do these weightings change with light exposure duration and

history? What levels of α-opic EDI are appropriate in a given time of day and setting?

Importantly, as originally envisaged [28], adoption of the new measurement approach has

facilitated a number of large-scale retrospective evaluations of historical data [35–39] and

informed new hypothesis-driven investigations [40–43] on the photoreceptive physiology for

circadian, neuroendocrine, and neurobehavioural responses in humans. In total, the evidence

from such studies [35–43] supports the view that, under most practically relevant situations

(extended exposures to polychromatic light in the absence of pharmacological pupil dilation),

light sensitivity of human physiological responses can be reliably approximated by the α-opic

irradiance for melanopsin or the corresponding EDI (melanopic EDI). Moreover, based on

the consistency of melanopic irradiance–response relationships across studies [38], it is now

possible to define realistic, evidence-based recommendations for light exposures that target

nonvisual responses (Fig 2). Alongside the emergence of freely available tools to calculate the

relevant metrics [44,45], there now exists an easily measured and internationally accepted SI-

compliant system of metrology [34] to inform lighting design and associated policy.

Here, we describe expert consensus-based recommendations for daytime, evening, and

nighttime light exposure, considerations associated with their applicability, the supporting sci-

entific evidence, and any caveats associated with the recommendations as they stand.

Methodology

The Second International Workshop on Circadian and Neurophysiological Photometry in

2019 brought together experts in lighting, neurophysiological photometry and sleep, and circa-

dian research (all workshop participants are included as authors of this manuscript). The

workshop was chaired by Brown and Wright who invited participants based on professional

and/or academic qualifications and on reputation of being a leading expert in the field, includ-

ing being an author of key scientific publications and/or international standards on the topic.

Workshop participants were provided goals and key questions to address prior to a structured

face-to-face meeting. The primary focus of the meeting was to develop expert consensus rec-

ommendations for healthy daytime and evening/nighttime light environments tentatively

based on the new SI-compliant measurement system (CIE S 026:2018) [34]. Initial questions

for review and discussion were the following:
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1. What range of melanopic EDI can be reasonably considered to provide minimal and maxi-

mal impacts on nonvisual ocular light responses in humans?

2. Do signals from rods and/or cones also play a major role, and, if so, what relevant guideline

levels could be recommended to account for such actions?

3. Do the answers to (1) and/or (2) vary across different nonvisual forming responses (e.g.,

circadian entrainment/resetting, sleep/arousal, effects on hormone secretion, and mood)

and, if so, what is the most appropriate general recommendation that can be provided?

Fig 2. Recommendations for melanopic light exposures in relation to the sensitivity of melatonin suppression,

circadian phase resetting, and subjective alerting responses. Data are derived from laboratory studies (in humans

without the use of pupil dilators) investigating the impact of long exposures (>2 hours) to primarily broadband light

sources on melatonin suppression [69,88,95,143,144] (A), circadian phase resetting [83,89,143,144] (B), and subjective

alerting responses [86] (C), as analysed in [38]. Group data (round symbols) are presented as mean ± SD; otherwise,

data for individual subjects are presented (square symbols). Shading represents the 95% confidence limits of an

unconstrained 4-parameter sigmoid fit to the data. For comparison across different response types (D), data sets from

A–C were normalised relative to the range of the curve fit for that response type. Shaded areas in D reflect the

consensus recommendations of the Second International Workshop on Circadian and Neurophysiological

Photometry for sleep, evening, and indoor daytime environments. Recommendations are intended to provide realistic

targets that minimise inappropriate nonvisual responses in the sleep environment (melanopic EDI<1 lux) and reduce

these so far as is practically possible presleep (3 hours before habitual sleep; melanopic EDI<10 lux) while maximising

relevant effects across the intervening daytime hours (melanopic EDI>250 lux). The nonshaded region indicates the

range of melanopic EDI that should, where possible, be avoided during evening and nighttime and are considered

suboptimal for daytime environments. EDI, equivalent daylight illuminance.

https://doi.org/10.1371/journal.pbio.3001571.g002

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001571 March 17, 2022 5 / 24

Radiation Protection and a number of their Project

Groups, Co-Convenor of an ISO committee on

Integrative Lighting, a member of two committees

of the Illuminating Engineering Society of North

America, Convenor of an IEC committee and a

member of a Core Group for the World Health

Organization, all as unpaid roles. LP served as the

CIE reporter to CIE TN 003:2015 on the first

Manchester Workshop in 2013, is currently serving

as Director and as Secretary of the CIE Division

“Photobiology and Photochemistry”, as the CIE

reporter on the CIE S 026 Toolbox (doi.org/10.

25039/S026.2018.TB), as a member of CIE Joint

Technical Committee 14 (working with ISO Joint

Working Group 4) on Integrative Lighting, and as

the CIE reporter on the second Manchester

Workshop 2019 (attended by all the authors), all as

unpaid roles LJMS’s full time position at Eindhoven

University has been partially funded by Signify, he

is also active in various unpaid roles within the

International Commission on Illumination (CIE).

DJS is a co-inventor on issued patents

(EP1614441A1 and WO2015052207A1), a

Founding member of the Daylight Academy and

reports receiving research support from BBSRC

and EU H2020-SC1-2020-Two-Stage-RTD,

ENLIGHTENme, Innovative policies for improving

citizens’ health and wellbeing addressing indoor

and outdoor lighting (No. 945238). CV is an unpaid

member of the Circadian Light Therapy (Inc.) and

the Chronsulting Scientific Advisory Boards. In

addition, CV’s research and scholarship is funded

by the University of Colorado Boulder, the Colorado

Clinical and Translational Sciences Institute, the

National Institutes of Health, and the Department of

Energy. MS is currently an unpaid member of CIE

Technical Committee TC 1-98 ("A Roadmap

Toward Basing CIE Colorimetry on Cone

Fundamentals"). MS was an unpaid advisor to the

Division Reportership DR 6-45 of Division 3

("Publication and maintenance of the CIE S026

Toolbox"). Between 2017 and 2020, MS was

elected Chair of the Color Technical Group within

the Optical Society. Since 2020, MS is an elected

member of the Daylight Academy, an unpaid

member of the Board of Advisors of the Center for

Environmental Therapeutics, and MS is a member

of the Technical Advisory Board of Faurecia

IRYStec Inc. Over the past two years (2019-2020),

MS has received industrial research support from f.

lux software LLC, Ocean Insight, and BIOS

Lighting. MS reports funding from the Wellcome

Trust, the Royal Society, EPSRC, Bioscientifica

Trust, Fight for Sight, Freie Akademische

Gesellschaft Basel, and the University of Oxford.

PCZ reports funding from National Institutes of

Health, Eisai, Philips, Jazz Pharmaceuticals,

https://doi.org/10.1371/journal.pbio.3001571.g002
https://doi.org/10.1371/journal.pbio.3001571
https://doi.org/10.25039/S026.2018.TB
https://doi.org/10.25039/S026.2018.TB


Participants were also asked to consider if recommended light exposures would vary

depending on which specific biological effects one is trying to achieve and/or on the target

population (e.g., shift workers, specific clinical applications, etc.) and to include empirical liter-

ature supporting their views. In the face-to-face meeting, the morning of the first day was

devoted to detailed presentations and discussion of the relevant scientific literature, and the

afternoon was devoted to breakout sessions for discussion of questions 1 to 3 noted above. The

second day was devoted to further discussion with sufficient time to address all opinions,

ideas, and concerns. Voting to determine the expert consensus recommendations occurred via

an iterative process; voting was limited to workshop participants and, where consensus could

not be initially reached, discussion and review of the relevant literature resumed until partici-

pants were in agreement. Following the establishment of the expert consensus recommenda-

tions, a writing plan was formulated to produce the current paper. Subgroups of workshop

participants initially drafted sections of the manuscript most relevant to their specialist exper-

tise, including providing accounts of the scientific evidence from laboratory and field studies,

relevance to other existing visual standards, and other special considerations associated with

application of the recommendations. The workshop chairs (Brown and Wright) then inte-

grated the expert content into a complete draft manuscript, including the recommendations

formalised during the meeting. Workshop participants reviewed, edited, and approved both

the draft (available as a preprint [46]), and this final version, which provides additional ratio-

nale supporting the recommendations and their practical application. The recommendations

and associated considerations described herein are therefore the product of a workshop

involving the authors. We are aware that such a workshop can rarely be exhaustive with respect

to expertise and/or views across all potential stakeholders.

Expert consensus-based recommendations

The recommendations, described below, are intended to provide realistic targets that will

result in appropriate circadian, neuroendocrine, and neurobehavioural responses to ocular

light exposure in humans.

Daytime light recommendations for indoor environments

Throughout the daytime, the recommended minimum melanopic EDI is 250 lux at the eye

measured in the vertical plane at approximately 1.2 m height (i.e., vertical illuminance at eye

level when seated). If available, daylight should be used in the first instance to meet these levels.

If additional electric lighting is required, the polychromatic white light should ideally have a

spectrum that, like natural daylight, is enriched in shorter wavelengths close to the peak of the

melanopic action spectrum (Fig 1A).

Evening light recommendations for residential and other indoor

environments

During the evening, starting at least 3 hours before bedtime, the recommended maximum

melanopic EDI is 10 lux measured at the eye in the vertical plane approximately 1.2 m height.

To help achieve this, where possible, the white light should have a spectrum depleted in short

wavelengths close to the peak of the melanopic action spectrum.

Nighttime light recommendations for the sleep environment

The sleep environment should be as dark as possible. The recommended maximum ambient

melanopic EDI is 1 lux measured at the eye.
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In case certain activities during the nighttime require vision, the recommended maximum

melanopic EDI is 10 lux measured at the eye in the vertical plane at approximately 1.2 m height.

Additional considerations

i. Exposure to a stable and regular daily light–dark cycle is also likely to reinforce good align-

ment of circadian rhythms, which may further benefit sleep, cognition, and health. These

recommendations should therefore be applied at the same time each day, so far as possible.

ii. These recommendations are not intended to supersede existing guidelines relating to visual

function and safety. The nonvisual ocular light responses covered here should be an addi-

tional level of consideration provided that relevant visual standards can still be met.

iii. These recommendations are derived based on data from (and intended to apply to) healthy

adults (aged 18 to 55) with regular daytime schedules. Special considerations may apply to

specific populations (e.g., children, older people, shift workers, or other individuals whose

light sensitivity deviates substantially from an “average” healthy adult) as discussed later in

this publication (see “Special cases and exceptions”).

Relationship to existing standards

There are several national and international standards that are relevant to indoor light expo-

sure in the built environment, which have been developed under rigorous due processes, con-

sensus, and other criteria. In terms of biological safety, there is a recent recommended practice

for photobiological safety that provides guidance on ocular and dermal health relative to light

exposure from all varieties of indoor lamps and lamp systems (American National Standards

Institute/Illuminating Engineering Society (ANSI/IES) RP-27-20) [47]. The International

Commission on Non-Ionizing Radiation Protection (ICNIRP) has also released a recent state-

ment concerning photobiological safety, specifically of light exposure from LEDs [48]. Other

existing guidelines, codes, and specifications for lighting installations in indoor places primar-

ily concentrate on visual function, including visual comfort, visual performance, and seeing

safely for people with normal, or corrected to normal, vision.

Current specifications within lighting practice are based on illuminance and several addi-

tional qualitative and quantitative needs concerning glare, colour rendering, flicker and tem-

poral light modulation, luminance distribution, and the directionality and variability (of both

colour and level) of light. These specifications are crafted to enable people to perform their

visual tasks accurately and efficiently, even for difficult circumstances or extended durations

(e.g., Deutsches Institut für Normung (DIN) SPEC 67600 [49]; ANSI/IES RP-28-16 [50]; and

EN 12464–1 [51]). Together with the focus on energy saving, the existing guidelines restrict

the illuminance indoors to levels that are typically at least 1 order of magnitude below the natu-

ral light environment outdoors. Moreover, the electrical light sources in most common use,

while optimised for their visual qualities, are typically substantially less efficient at stimulating

melanopsin than natural daylight of equivalent illuminance, i.e., the light they provide has a

low ratio of melanopic EDI to photopic illuminance (quantified by the melanopic daylight effi-

cacy ratio (melanopic DER) [34,52]; see Fig 3). This leaves us with an indoor light environ-

ment that is potentially suboptimal for supporting human health, performance, and well-being

[9–12, 53]. For example, Comité Européen de Normalisation (CEN) guidelines specify a mini-

mum task plane photopic illuminance of 500 lux for writing, typing, reading, and data process-

ing tasks. When just meeting this illuminance threshold with regular lighting (i.e., melanopic

DER well below 1; Fig 3A and 3B), typical (vertical) melanopic EDIs encountered across the
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working day will fall below 200 lux (e.g., [54–56]). Moreover, specified illuminance levels for

other settings, where visual demands are lower (e.g., corridors, rest rooms, etc.), will typically

be substantially lower than the above (melanopic EDI <200 lux; [51]).

This publication is centrally based on an internationally balloted standard from the CIE [34],

which now provides an accepted framework upon which to derive lighting specifications that opti-

mise visual, circadian, neuroendocrine, and neurobehavioural responses to light. The correspond-

ing expert-led consensus recommendations for biologically appropriate lighting are reflected in

general melanopic EDI thresholds for various times of day/night. The recommendations presented

here are intended to be widely achievable within the constraints of other relevant lighting guide-

lines (e.g., via lighting of appropriate spectral composition; Fig 3C and 3D) and to provide a sound

scientific basis for the formal development of recommended practices in light and lighting from

national and international standards organisations (e.g., ANSI, CIE, DIN, IES, and the Interna-

tional Organization for Standardization; ISO).

In closing this section, we note that a number of other recommendations relevant to physi-

ological and neurobehavioural effects of light have been proposed in recent years, including

some guidelines and specifications by commercial (for-profit) entities (reviewed in [57]).

Unlike these previous suggestions, the present recommendations are both built around an SI-

complaint, internationally accepted and validated measurement system and are supported by

expert scientific consensus, features recognised as critical by established industry regulatory

and standardisation bodies [58,59].

Practical considerations

As noted above, while the recommendations detailed here are expected to be widely achiev-

able, implementing these in any real-world setting necessitates care not to compromise other

Fig 3. Impact of divergent spectral composition of electrical white light sources on melanopic efficiency. Panels A

and B illustrate spectral power distributions (yellow) for commonly encountered fluorescent (A) and LED-based (B)

white light sources. Panels C and D represent high melanopic content LED source of similar (C) and cooler (higher)

correlated colour temperature (D) achievable with current technologies. Spectra in A and B represent CIE standard

illuminants F11 and LED-B1, plotted from tabulated source data [142], spectra in C and D were modelled by

combining weighted combinations of spectra from commercially available broad and narrowband LED sources.

Melanopic (blue; V(λ)) and photopic (green; V(λ)) spectral efficiency functions are shown for reference. Photopic

illuminance (Ev) and melanopic equivalent daylight (D65) illuminance (ED65
v;mel) for each spectrum is provided above,

along with the melanopic efficiency for that light source (melanopic daylight (D65) efficacy ratio; melanopic DER,

defined as the ratio of melanopic irradiances for this source to that for a D65 light source at the same photopic

illuminance [34,52]). Note, in this example, all sources provide a photopic illuminance of 300 lux, but vary in

melanopic EDI, due to the relatively low melanopic DER of commonly used white light sources. CIE, Commission

Internationale de l’Eclairage; melanopic DER, melanopic daylight efficacy ratio; melaponic EDI, melanopic equivalent

daylight illuminance.

https://doi.org/10.1371/journal.pbio.3001571.g003
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important regulations and/or considerations (e.g., visual appearance, glare, thermal comfort,

safety, and energy efficiency). For example, an important consideration in achieving our rec-

ommendations for daytime settings is whether this would necessitate higher overall light levels

and therefore increase energy expenditure and/or the risk of visual discomfort (e.g., glare).

Notably, there is a range of approaches that (individually or in combination) could allow these

recommendations to be met while avoiding such issues, including increasing the availability

and accessibility of natural daylight (e.g., [56]), engineering the spectral content of electric

lighting to increase melanopic DER, adjusting finishes and furnishings to optimise surface

reflectances, and adjusting the placement, angular dispersion and size of accessible luminous

surfaces to enhance vertical illuminances and/or minimise glare [60–64].

As an illustration of the above, a recent study modelling common office and educational

settings found a combination of adjustments in surface finishes and spectral composition of

lighting could readily produce 2- to 3-fold changes in vertical melanopsin-weighted light expo-

sure [62]. For the conditions assessed there, where relevant national standards specified hori-

zontal illuminances of 300 to 400 lux, achieving an average melanopic EDI of 250 lux in the

vertical plane required an approximately 50% increase in horizontal illuminance and energy

output when using an ‘off-the shelf’ tuneable white LED (6,500 K; melanopic DER = 0.83).

With appropriate design, however, colour mixed LEDs can allow much higher melanopic

DERs, even when maintaining warmer colour temperatures (e.g., up to 1.4 for 4,000 K sources

[61]). Moreover, engineered LED luminaires that balance less extreme increases in melanopic

DER with a good fidelity colour rendition index and slightly cooler white light [65] can facili-

tate meeting our daytime recommendations without significantly compromising energy

expenditure or visual qualities (e.g., Fig 3D). Further, the energy efficiency of colour-mixed

LED sources is rapidly approaching that typical of standard phosphor-converted LEDs and is

scheduled to exceed this over the next decade [66]. Thus, while optimising building and light-

ing design to maximise energy efficiency and minimise visual discomfort remain important

goals, these should not ultimately prove impediments to implementing our recommendations

in most settings.

By contrast, increased energy expenditure is not a concern with respect to our evening/

nighttime recommendations, where the significant practical consideration is rather ensuring

that there is sufficient light to comfortably and safely perform visually guided activities. For the

sleep environment, it is already natural to greatly minimise light exposure (by turning off

lights, covering windows, and the like). There is likely still a fair proportion of individuals for

whom the sleep environment is currently slightly above a melanopic EDI of 1 lux (e.g., [67

68]), although we would not envisage any significant barriers to reducing this where required

(e.g., via use of blackout blinds and the installation of orientation lighting where needed). Out-

side of the sleep environment, however, ensuring sufficient light is available for vision is of

course essential.

From existing ambulatory field assessments, evening (photopic) illuminance is commonly

reported in the order of 30 lux [69–73]. Although certain rooms (e.g., kitchens) may be more

brightly lit, this value of 30 lux corresponds to vertical illuminances typically measured in most

indoor domestic environments in the evening [74]. In such cases, meeting the threshold mela-

nopic EDI of 10 lux need not require any significant change in overall illuminance. Hence,

many commonly used domestic warm white (2,700 to 3,000 K) LEDs already have a melanopic

DER sufficiently low (<0.35 [52]) to meet our target while maintaining an illuminance of

approximately 30 lux. Consistent with this view, a recent study that assessed evening light

exposure in home settings via wearable spectrophotometers found that in nearly 50% of occa-

sions melanopic EDI was already at or below 10 lux [75]. Moreover, many cases where evening

light exposure was above this level involved lighting enriched in shorter wavelengths and
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could, in principle, been brought in line with our recommendations simply by using lower

melanopic DER light sources. Further, the use of appropriate task lighting and/or lighting spe-

cifically engineered to minimise melanopic output (e.g., [69]) may further support activities

that benefit from illuminances above 30 lux while maintaining an overall environment where

melanopic EDI at the eyes remains below 10 lux (although the latter ultra-low melanopic DER

sources will likely come at the expense of reduced colour discrimination). A particular chal-

lenge, however, comes from indoor environments outside the home (e.g., spaces shared by

individuals with radically different daily/work schedules), where existing visual standards will

often specify illuminance levels (>100 lux) that cannot be achieved while maintaining a verti-

cal melanopic EDI <10 lux and optimal colour discrimination. Nonetheless, while meeting

our evening target may not be achievable in all instances, it should be broadly achievable in

most domestic settings with currently available lighting technology and, therefore, for those

with the regular daytime work schedules for which it is intended to apply.

A final point for consideration relates to the likely benefits of implementing our recommen-

dations that may have to be weighed up to justify any associated costs (e.g., due to upgrading

workplace lighting). As discussed in detail below, there is certainly evidence that increased

daytime light can improve subjective or objective measures of performance, sleep, alertness,

and/or mood and that decreased evening and nighttime exposures can reduce adverse effects

of light on sleep, circadian rhythms, and long-term health (see “Evidence from real-world set-

tings”). Directly quantifying the benefits that might be expected associated with implementing

our recommendations is far more challenging. In the future, large-scale longitudinal studies

that combine data on objectively measured performance (e.g., sick days, productivity, and inci-

dence of accidents), health outcomes, and appropriately measured (personal) light exposure

may provide such information. In the interim, it is worth noting that, even ignoring possible

impacts on the incidence of common and costly health complications associated with circa-

dian disruption (e.g., cardiovascular disease, diabetes, and cancer), benefits associated with

improved sleep alone could potentially be substantial [76]. Indeed, insufficient sleep is esti-

mated to cost the United States 2.4% GDP, due absenteeism, accidents, reduced productivity,

etc. [76,77]. Moreover, even comparatively modest improvements for those with poor sleep

(<6 hours sleep/night increased to 6 to 7 hours/night) are predicted to increase US GDP in the

order 1.7% or approximately 300 billion USD/year [77].

Scientific rationale

Evidence from laboratory studies

The rationale for basing these recommendations upon melanopic EDI is, in the first instance,

provided by a comprehensive analysis of data aggregated from controlled laboratory studies

(performed in healthy adults aged 18 to 55) that have evaluated the 2 best understood neuroen-

docrine and circadian light responses in humans: acute suppression of nocturnal pineal mela-

tonin production and circadian phase resetting by evening or nighttime light exposure [36–

39]. Those data indicate that, for a wide range of monochromatic, narrowband and broadband

light sources and exposure durations, such ocular light responses are better predicted by mela-

nopic irradiance than by photopic illuminance or other existing metrics. Additional contribu-

tions from photoreceptors other than melanopsin are expected based on known ipRGC

biology [26,28], and evidence for such contributions has been observed under certain circum-

stances [30,78,79]. Importantly, however, the sum of empirical human data suggest that any

such influences are sufficiently limited that, under most practically relevant circumstances, the

spectral sensitivity of circadian and neuroendocrine and, by extension, other related nonvisual

responses to ocular light exposure, can be well approximated by melanopic EDI.
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The clearest evidence for contributions from photoreceptors other than melanopsin has so

far come from evaluations of melatonin suppression in short (<1 hour) time windows follow-

ing exposures to monochromatic light in participants with dilated pupils (to remove indirect

effects of pupil constriction on apparent sensitivity). Data from 2 such studies are compatible

with the possibilities that S-cones [78] or the photopic system [30] may contribute alongside

melanopsin (see also reanalysis in [79]). Importantly, however, a large body of data with and

without use of pupil dilation indicates that for exposures of an hour or more, melatonin sup-

pression can be reliably predicted by melanopic EDI [37,38,80,81]. This conclusion is further

strengthened by findings from recent studies that have employed photoreceptor isolating sti-

muli to confirm that melanopsin-selective changes in irradiance modulate melatonin produc-

tion [40,41] but failed to find any effect of large variations in irradiance selectively targeting

S-cones [42]. Further evidence consistent with a dominant role for melanopsin comes from

earlier observations that totally blind humans (where remaining light responses match the

spectral sensitivity expected for melanopsin) [23,25] can display near-full melatonin suppres-

sion [15,17,23], as do individuals with colour vision deficiencies [82].

In line with the data discussed above, totally blind individuals can also display circadian

phase resetting responses to bright white light of comparable magnitude to sighted individuals

[16]. Findings from one study in sighted individuals with pharmacologically dilated pupils are

suggestive of cone contributions to circadian phase resetting following long (6.5 hours) expo-

sures to dim monochromatic light [30]. However, an equivalent effect is not readily apparent

across data from studies performed on participants with undilated pupils [38,83,84]. Thus, lab-

oratory data collected under conditions that are more relevant to the real world, where pupils

are freely light responsive, indicate that the influence of cones is sufficiently small that melano-

pic irradiance can provide a reliable approximation of the spectral sensitivity of circadian

phase resetting.

By contrast to the circadian and neuroendocrine responses discussed above, other relevant

effects of light that are of importance but mechanistically less well understood, such as acute

light effects on alertness, have not yet received the same degree of analytic and parametric

study. Nonetheless, light-dependent changes in subjective alertness have commonly been

reported (reviewed in [2,85]) and, where performed, functional studies employing electroen-

cephalogram (EEG) or magnetic resonance imaging approaches reveal clear neurophysiologi-

cal correlates of such subjectively measured alertness changes (e.g., [43,86,87]).

With respect to the conditions under which such alerting effects occur, a recent compre-

hensive meta-analysis reveals that self-reported alerting responses to white light are commonly

observable within a similar range of light intensities to those associated with effects on the cir-

cadian system (irrespective of time of day) [2]. Many of the original studies contributing to the

latter analysis predate the discovery of melanopsin. It is possible, however, to obtain reasonable

approximations of melanopic EDI from the photopic illuminance reported by earlier studies,

by reference to the typical ratio of these 2 parameters expected for the relevant light sources

(i.e., melanopic DER). For example, a recent meta-analysis [2] notes a significant subjective

alerting effect of bright white light in almost 80% of studies (15 of 19) where the “dim” light

condition was below 80 lux and the “bright” condition >500 lux (values that correspond to

melanopic EDI of<50 lux and>250 lux, using a conservative melanopic DER of 0.6 and 0.5,

respectively). Further, the published irradiance response data for subjective (and objective)

alerting responses to nocturnal broadband white light exposure [86] align very well with the

relationship between melanopic EDI and circadian-related responses determined from other

studies that did not employ pupil dilation [38,88,89] (Fig 2).

The recent meta-analysis discussed above [2], which could not reach definitive conclusions

regarding spectral sensitivity of alerting responses, did not assess the extent to which the
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magnitude of alerting responses were predictable based on melanopic EDI. Nonetheless, the

most informative studies included in that analysis [69,90–94] and other relevant studies and

meta-analyses [36,38,39,69,95] indicate that alerting effects produced by light of varying spec-

tral composition are certainly better predicted by melanopic irradiance than other available

metrics. Moreover, recent studies provide evidence that selectively increasing melanopic irra-

diance, in the absence of changes in either illuminance or colour, can promote self-reported

alertness during both day [43] and evening [40]. The former study also confirmed EEG corre-

lates of enhanced daytime alertness via alpha attenuation test [43]. Collectively, these data do

not exclude the possibility that cone signals might exert a greater influence over acute alerting

responses to light than is apparent for circadian and neuroendocrine effects. Nonetheless, the

bulk of available evidence supports the view that melanopic EDI is the best currently existing

predictor of alerting responses to light and is relevant for both day and evening/nighttime sce-

narios. The currently available data do not provide any definitive evidence that the sensitivity

of such alerting responses differs substantially relative to other melanopsin-driven responses

to evening/nighttime light exposure (Fig 2) or between night and day (reviewed in [2,85]).

Accordingly, in the absence of new information, the sensitivity range defined for the more

comprehensively studied circadian and neuroendocrine responses can be used as a sensible

predictor of propensity of light to modulate alertness, regardless of time of day.

In sum, most of the available laboratory data suggest that melanopic EDI is a reliable index

that provides a good approximation of the apparent spectral sensitivity of human circadian

and acute nonvisual responses to ocular light exposure. In particular, for the extended expo-

sures to polychromatic light that are relevant to everyday living environments, existing evi-

dence indicates that any additional contributions from cones (or rods; whose spectral

sensitivity is close to melanopsin [34,96,97]) do not compromise the predictive value of mela-

nopic EDI.

As befitting a system evolved to optimise physiology and behaviour in anticipation of day–

night transitions driven by the Earth’s rotation relative to the sun, the operating range of

human circadian, neuroendocrine, and alerting responses to ocular light exposure spans the

range of light intensities typically encountered between civil twilight and sunrise/sunset (i.e.,

melanopic EDI of approximately 1 to 1,000 lux; Fig 2). The recommendations indicated above

are therefore intended to ensure that the sleeping environment is kept at a limit below which

any appreciable nonvisual responses of this nature are elicited and to minimise negative effects

of the light environment during sleep and presleep hours [98]. Similarly, recommendations for

daytime and evening light exposure are intended, so far as practically possible, to respectively

maximise and minimise any associated effects on sleep, alertness and the circadian system. By

providing an appropriately marked day–night signal and reducing potential disruptive effects

of evening light, collectively, these recommendations are expected to promote robust and

appropriately timed circadian functions in most individuals [99], as well as to promote alert-

ness throughout the day and support healthy sleep.

Also worthy of note here, a number of studies have provided evidence that undesirable

effects of evening/nighttime light can be mitigated by brighter light exposure earlier in the day

(e.g., [31,33,100–104]). While opposing actions of light exposure during morning/daytime and

evening are a well-understood feature of circadian function [105,106], these modulatory effects

also extend to more acute actions of evening light, such as its ability to suppress melatonin pro-

duction. At present, the physiology responsible for such actions are not well understood, nor

does currently available data enable a detailed assessment of the intensity and/or time range

across which such effects operate. What is clear, however, is that modulatory effects of prior

light exposure are certainly not limited to earlier parts of the day [33,104]. Accordingly, such

observations suggest a further potential benefit of maintaining high melanopic light exposure
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throughout the day. The visual requirements necessary or desirable for some activities during

later parts of the evening (e.g., relating to illuminance and/or colour) place a limit on the extent

to which disruptive effects of white light can be entirely avoided simply by reducing melanopic

EDI (e.g., using lighting with a lower melanopic DER). Higher levels of daytime light exposure

may therefore help mitigate any disruptive effects associated with unavoidable light exposure

in later parts of the evening.

Evidence from real-world settings

While our current understanding of the spectral sensitivity and dynamic range of circadian,

neuroendocrine, and neurobehavioural light responses in humans is most directly informed

by laboratory studies, our recommendations are also supported by field evaluations of the

impact of environmental lighting.

Access to electric lighting is associated with reduced daytime and increased nighttime light

exposure and altered sleep timing [107–110], with many individuals in modern society rou-

tinely experiencing melanopic EDI <250 lux during the day, especially those with delayed

sleep schedules [72,73]. Accordingly, there have been a number of real-world studies imple-

menting daytime high melanopic lighting interventions in workplaces, schools, and care

homes that provide practical corroboration for the recommendation outlined above [111].

Such practically focused investigations were not designed to evaluate melanopsin contribu-

tions per se (with increases in melanopic EDI usually being accompanied by increases in col-

our temperature and/or illuminance), but such studies do provide valuable insight in likely

real-world benefits associated with meeting our recommendations.

In offices, increasing the melanopic output of architectural lighting (approximately 2-fold)

via short wavelength-enriched lamps (17,000 K; melanopic DER�1, versus 3,000 to 4,000 K;

melanopic DER<0.6) had beneficial effects on self-reported alertness, performance, mood,

and sleep quality [54,55]. Similarly, enhancing daytime melanopic exposure by increased

access to natural daylight in the workplace improved sleep and objectively measured cognitive

performance (higher-order decision-making) in office workers [56]. In these studies [54–56],

the average melanopic EDI in the control working environment was <150 lux (standard 3,000

to 4,000 K fluorescent lighting; Fig 3A), with the experimental “active” conditions increasing

melanopic EDI to approximately 170 to 290 lux. Hence, modest and readily achievable adjust-

ments to increase light exposure can be associated with measurable benefits, without any

observable detrimental effects.

In schools, findings from a series of studies employing fluorescent lighting with various

intensities and spectra indicate that settings with a higher melanopic output (melanopic EDI

>500 lux) can improve measures of concentration and reading comprehension compared to

current standard lighting (typically providing melanopic EDI <200 lux; [112–115]). Similar

benefits of short wavelength-enriched (17,000 K) versus standard 4000 K fluorescent light on

reducing sleepiness have also been shown in college-aged students during afternoon lectures

[116]. Further, building on seminal work showing the benefits of increased daytime light levels

for the elderly [117], several clinical trials have shown the benefits of enhanced melanopic light

exposure during daytime hours on care home residents [118–120]. There is evidence of

reduced circadian sensitivity/responsiveness to light in older adults (see “Special cases and

exceptions”), including changes in lens transmission that could reduce effective retinal dose

corresponding to a given melanopic EDI by approximately 50% relative to the (young) stan-

dard observer on which calculations are based [44]. Nonetheless, in these studies, compared to

control conditions (typical daytime melanopic EDI<150 lux), implementation of higher mela-

nopic, short-wavelength enriched, polychromatic lighting (5,500 to 17,000 K, providing
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melanopic EDI >250 lx) led to a range of improvements including reduced depression, agita-

tion, and anxiety, better daytime activity and, in some studies, improved sleep quality.

Collectively, increasing melanopic light exposure during the day in line with our recom-

mendations has been shown to benefit alertness, performance, and sleep in a wide range of

real-world settings, even in the presence of daylight or stimulants such as caffeine or for youn-

ger or older age groups. Further, there is minimal evidence for negative effects of increased

daytime melanopic light exposures. One care home study [120], where the brightest daytime

light intervention was examined (bright 17,000 K lighting providing melanopic EDI approxi-

mately 900 lux), reported a reduction in sleep efficiency and quality when compared to stan-

dard 4000 K lighting (melanopic EDI approximately 100 lux). Further, in an office study of

dayworkers where the melanopic EDI of control condition was already high (approximately

400 lux) further increases (melanopic EDI approximately 750 lux) associated with the use of an

8000 K lighting system appeared to prevent the normal seasonal advance in sleep timing [121].

While the latter could be considered beneficial, as it enhances circadian alignment to the work-

ing day, long-term effects of decoupling from seasonal environmental rhythms is, to date,

unclear. Given these data, future research is warranted to identify the potential beneficial and

adverse effects on human physiology, cognition, behaviour, and health of electric lighting that

greatly exceeds our intensity recommendations.

In addition to reduced daytime light exposure, increased exposure to electric light in the

evening and night is commonly considered to exert adverse effects on sleep, circadian

rhythms, and health outcomes [8–11,67,68,122]. Indeed, even relatively low levels of light in

the sleep environment (conservatively, melanopic EDI >3 lux) have been associated with

impaired sleep and increased incidence of diabetes in large cohort studies [67,68]. Further, typ-

ical evening light levels often fall within the range where significant nonvisual responses would

be predicted from laboratory studies [75]. For example, a significant source of evening light

exposure is from visual displays, which in the absence of any other illumination, can provide

melanopic EDI of>60 lux [52,123,124] (above the typical level of exposure required to pro-

duce half-maximal subjective alerting, melatonin suppressing, and circadian phase shifting

responses in laboratory studies; Fig 2). Indeed, several studies have shown that light from mod-

ern visual displays is sufficient to reduce the evening rise in melatonin, impair sleepiness, and/

or increase subjectively or objectively measured alertness [123–126]. Moreover, manipulations

that reduce exposure to short wavelength light from such displays has, in some laboratory

studies, been found to lessen these effects [125,126] as have selective reductions in melanopic

output [40]. There have not yet been large-scale longitudinal field studies on how effective

such manipulations might be, although it is noteworthy that the reductions in melanopic radi-

ance achievable simply by adjusting the spectral content of current visual displays are modest

(approximately 50% decrease). As such, we expect that such approaches will be most beneficial

when combined with other strategies to minimise evening illumination (e.g., dimming of

screens and low melanopic ambient lighting). In addition, the potential protective role of ade-

quate daytime light exposure to attenuate adverse effects of evening and nighttime light expo-

sure on circadian physiology requires future research.

Special cases and exceptions

While the current recommendations are intended to be widely applicable, the scientific under-

pinnings primarily derive from studies of neuroendocrine, circadian, sleep, and alerting

responses to ocular light exposure in healthy young adults. Even among this group, findings

from a recent laboratory study show significant (>10-fold) interindividual variations in sensi-

tivity to white light–induced suppression of the evening rise in melatonin [88]. The physiology
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underlying this variability is currently unknown. Importantly, however, assuming such vari-

ability is indicative of that for the healthy adult populations contributing across the range of

lab studies discussed above, it is inherently incorporated into our recommendations. Hence,

targets for daytime and nighttime exposures are based on light intensities found to produce

near maximal or minimal responses across the test population. With respect to the recommen-

dation for evening settings, there may be more significant variability in the relative magnitude

of circadian, neuroendocrine, and associated neurophysiological responses, based on the

intraindividual differences noted above [88]. In the absence of any ready means for predicting

individual differences in sensitivity, the present recommendation of a maximum melanopic

EDI of 10 lux is intended to appropriately minimise undesirable effects of evening light for the

“average” healthy adult while allowing for sufficient light for common evening activities (see

“Practical considerations” for further discussion). As it stands, where the evening light envi-

ronment currently results in a melanopic EDI above 10 lux, reducing exposure in line with our

recommendations is certainly still expected to be beneficial, regardless of individual differences

in sensitivity, although future developments may make it possible to refine recommendations

for specific individuals.

The magnitude of circadian and neuroendocrine responses to light also depends on age,

with those in young children being larger and those in older adults tending to be smaller when

compared to young adults [127–131]. These observations may, in part, reflect age-related dif-

ferences in the amount of light reaching the retina (due to changes in pupil size and lens trans-

mittance), although more direct changes in sensitivity or amplitude may also be involved.

Certainly, one previous study that investigated the impact of age-related changes in lens trans-

mittance did not find that this was associated with the expected reduction in light induced

melatonin suppression in older adults [132]. Changes in light exposure in line with the current

recommendations are still expected to be of general benefit to both young [112–115,124,126]

and older individuals [67,68,118–120] (where their current daytime light exposure falls below,

or evening/nighttime exposure above, the relevant targets). Select groups, however, may fur-

ther benefit from higher daytime (e.g., older people) and/or lower evening exposures (e.g.,

children) than indicated in the recommendations. Similarly, disruptions to sleep and circadian

rhythms are commonly associated with many disorders and disease states [8,133]. While

adjusting light exposure may be of benefit in some or all of these conditions, further research

will be required to determine whether alterations to the recommended thresholds will be

required for such individuals.

In addition to the points above, a particular challenge in optimising light exposure to bene-

fit health and performance relates to shift workers. Current light exposure advice for night

shift workers is still not mature [134], and we want to stress that the present recommendations

are not intended for this purpose. There is certainly evidence that increasing melanopic light

levels in the work environment can improve subjective and/or objectively measured alertness

and performance in shift workers [135–138]. Important benefits such as these do, however,

need to be weighed in the context of potential disruptions to circadian alignment and chronic

effects on health [8–14]. Addressing these important questions remains a key area for future

investigation and shift work–related consensus guidance on best practice.

As discussed above, it is also essential that any changes to light exposure intended to adjust

melanopsin-dependent physiological responses do not compromise visual requirements. For

example, the elderly may need brighter lighting than recommended above to move safely

between the bedroom and bathroom at night [12]. In many cases, such issues may be

addressed by using lighting with an appropriate spectral composition (i.e., by using lighting

with a low melanopic DER) and/or lighting designs that avoid direct illumination of the eyes.

Nonetheless, there may be some instances where meeting the requirements for visual
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performance, visual comfort, and safety are incompatible with our recommendations regard-

ing nonvisual responses, in which case the former must take precedence. Finally, while it is

possible to comply with the recommended melanopic EDI thresholds specified here solely via

exposure to electric light, there are a number of known and suspected benefits of exposure to

broad-spectrum, outdoor, daylight [53,139–141].

Future directions

The recommendations outlined here are derived from a synthesis of several decades of

research into the biology regulating circadian, sleep, physiological and cognitive responses to

light and their practical implications. There is, without question, evidence that the use of mela-

nopic irradiance as a model for the spectral sensitivity of such responses represents a simplifi-

cation of the underlying biology. Although, as an aside, we note that this is true also for the

established and widely used, photometric quantities (luminance and illuminance) that are cur-

rently applied to quantify conventional “brightness.” Nevertheless, we leave open the possibil-

ity that a deeper understanding of rod and/or cone contributions to physiological responses

will reveal multiphotoreceptor models of spectral sensitivity that may allow a more accurate

prediction of circadian, sleep, neuroendocrine, and/or cognitive responses. The contribution

of rods to such responses is an interesting topic for research in its own right. Nonetheless,

including a rod component in any such future metrics is unlikely to substantially improve the

accuracy with which they recreate the spectral sensitivity of the relevant response(s), since the

very similar spectral sensitivity profiles of rods and melanopsin render effective irradiance for

these 2 opsins highly correlated [97]. Conversely, cone spectral sensitivity is quite distinct from

melanopsin and has the potential to substantially refine metrics for circadian and neurophysi-

ological responses. In particular, future work may reveal specific lighting conditions that maxi-

mise cone influence to produce practically relevant modulations in nonvisual responses to

light (e.g., on the circadian system, neuroendocrine function, sleep physiology, and/or and

alerting responses). At present, however, existing evidence indicates that the use of melanopic

irradiance/EDI would not lead one to substantially over- or underestimate biological and

behavioural effects for the types of light exposure that are typically encountered across daily

life [35–38,40–43].

Further research into the factors influencing individual differences in the sensitivity of mel-

anopsin-mediated responses to light exposure may make it possible to tailor guidelines to spe-

cific groups or even individuals. For the time being, our recommendations are derived from

group data that must incorporate much of this variability. As such, it is expected that the rec-

ommendations for daytime and the sleep environment should be broadly applicable and

strongly engage relevant circadian and neurophysiological responses for the vast majority of

healthy adults. Known, age-related sources of variability are already at least partly accounted

for by the inclusion of corrections for changes in lens transmission described in the nonnor-

mative appendices of the existing standard [34]. Recommendations may, however, be modified

in the future for certain groups such as children, older adults, or patient groups whose sensitiv-

ity to light may differ from the healthy adult population on which the present recommenda-

tions are based.

The current recommendations are intended to inform lighting design considerations for

typical, real-world environments such as offices and other workplaces, schools, and colleges,

residences, care homes, and in- and outpatient settings. As noted above, application of our rec-

ommendations across such settings is facilitated by the free availability of tools for calculating

melanopic EDI (and also estimating this given known illuminance and type of lighting)

[44,45]. Nonetheless, the emergence of low-cost commercial sensors for direct measurement
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of melanopic EDI (akin to conventional “lux meters”) is expected to further increase the ease

with which the recommendations can be adopted.

A final point for consideration relates to applications of light therapy for clinical conditions

like affective and circadian rhythm sleep disorders or for purposes such as improving circadian

regulation and alertness in night and shift workers or transmeridian travellers experiencing jet

lag. The current recommendations are not directly formulated for such uses, but the existing

applications of ocular light therapy likely involve the same or similar biological underpinnings

as discussed above. Given existing evidence for benefits of bright light therapy [5–7], perhaps

widespread adoption of the recommendations described here will contribute to a reduction in

the prevalence of affective and sleep disorders. More significantly, however, we expect the sci-

entific framework that informs these recommendations to provide a concrete basis upon

which to generate hypotheses to test for the subsequent establishment of optimal light treat-

ment recommendations for clinical and travel applications.
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